
Agent-based modelling + How to program in one e-z lesson

Ben Klemens

1

How to Program

[As taught by a theorist]

• Data structures

• functions

• function contents

• frames, scope, & encapsulation

• compilation and/or execution

2

Data structures
The basic types

• int: an integer

• float: a real number (with a floating decimal point)

• char: a character. Java version: string

3

Data structures
structures

A combination of types, clumped into one header.

typedef struct ppp{

char* first_name, last_name;

float height, weight;

int age;

} person;

Almost all languages call subelements with a dot:

person steve;

steve.height = 175.8;

steve.age = 40;

4

Data structures
arrays

A numbered list of either pure types or strucutres.

float grades[10];

person survey_data[200];

grades[3] = 0.68;

survey_data[40].height = 160;

5

Functions
The black box

All functions take some input, do something, and return an output.

float get_hwr(person p){

float ratio;

ratio = p.height / p.weight;

return ratio;

}

6

Functions
The black box

All functions take some input, do something, and return an output.

float get_hwr(person p){

float ratio;

ratio = p.height / p.weight;

return ratio;

}

Function header summarizes this:

return_type what_i_do (input_types)

Function contents
assignment

Notice: one equals sign.

variable = a_value;

math

+ - * / %

Some cute ’n’ conveninet forms (Java, C++, C, asst others):

a += b; a = a + b;

a -= b; a = a - b;

a *= b; a = a * b;

a /= b; a = a / b;

a %= b; a = a % b;

a++; a = a + 1;

a--; a = a - 1;

7

Function contents
conditonal evaluation

if (a == b){ //two equals signs

do_stuff;

}

else

dont;

8

Function contents
conditonal evaluation

if (a == b){ //two equals signs
do_stuff;
}

else
dont;

Also:

var1 > var2
var1 <= var2
var1
function(x)

If it evaluates to a zero it’s false; else it’s true.

while loops

i = 0;
while(i< array_limit){

use_array_element(i);
i++;

}

Function contents
conditonal evaluation

if (a == b){ //two equals signs
do_stuff;
}

else
dont;

Also:

var1 > var2
var1 <= var2
var1
function(x)

If it evaluates to a zero it’s false; else it’s true.

while loops

i = 0;
while(i< array_limit){

use_array_element(i);
i++;

}

Function contents: loops
for loops

for(i=0; i< array_limit; i++){

use_array_element(i);

}

9

Comments
Use them.

/* for long comments, start with slash-star,

end with star-slash. */

//For short comments, just start with two slashes

#Scripting languages use an octothorpe

%TeX uses a percent sign.

10

That’s all you get.

To make it interesting, we build and package larger structures which do a
lot with little code.

11

The stack of frames

• The function running now is the current frame. There can be only one.

• If the function calls a new frame, then a new frame is created and runs.

• Picture a stack of frames. Only the top frame is active and visible.

• The bottom of the stack is the main() function or the top of the file
called.

12

The stack of frames

• The function running now is the current frame. There can be only one.

• If the function calls a new frame, then a new frame is created and runs.

• Picture a stack of frames. Only the top frame is active and visible.

• The bottom of the stack is the main() function or the top of the file
called.

An example, with 402 frames.

int main (void){

person the_population[400]; //(this won’t actually work)

the_population = produce_people("data_file");

for (i=0; i<400; i++)

print "the hwr of person ". i . " is ". get_hwr(the_population[i]);

return 0;

}

Functions
call-by-value v call-by-reference

One of the key differences between languages.

• Call-by-value: In most languages, when a frame is built, a copy of the
input variables are sent. C, C++, Matlab, R, Perl &c.

• Call-by-reference: Send in the variable itself, to be modified or de-
stroyed inside the function. Always in Java; others use pointers. [Ex-
cept R, which just can’t.]

13

Scope
The other key difference between languages.

scope of a variable: The frames which can see (a copy of) the variable.
Options:

• global: evey frame gets it.

• local: functions see only var.s delcared inside the function or explicity
passed via reference.

• file-based: variables are global only within the text file they’re declared
in. Use multiple text files to divide scope.

• object-based: next slide.

14

Scope
Objects

An object is a structure with function elements (aka methods). Call func-
tions as you would other elements: with a dot. person.hwr().

15

Scope
Objects

An object is a structure with function elements (aka methods). Call func-
tions as you would other elements: with a dot. person.hwr().

This engenders new scope options:

• public: if person is in scope, then so are its public elements (via the
dot).

• private: scope is limited to functions which are part of the object.

Scope
The importance of good scope

The rule: keep all variables’ scope as small as possible.

• Fewer moving parts in every frame ⇒ easier debugging.

• Allows overloading: let person have a years variable and a
person.age() function and let dog have a dog.years and a
dog.age() function too.

• Allows encapsulation.

16

Encapsulation
Or, modular programming

• File-based scope

– Each file is a module entire unto itself. Public variables are put into
an accompanying header file.

– #include file.h to call the functions or use the structures de-
clared therein.

17

Encapsulation
Or, modular programming

• File-based scope

– Each file is a module entire unto itself. Public variables are put into
an accompanying header file.

– #include file.h to call the functions or use the structures de-
clared therein.

• object-based scope

– The declaration of the object structure explicitly lists the pub-
lic/private components.

– Usually, each object is defined in a separate file anyway, which is
#included.

Encapsulation
inheritance

• Files may #include other files, which in turn #include others, &c.

• Objects may inherit from other objects, e.g., Players are a type of Cell-
Occupant:
public class Player extends CellOccupant

18

Encapsulation
inheritance

• Files may #include other files, which in turn #include others, &c.

• Objects may inherit from other objects, e.g., Players are a type of Cell-
Occupant:
public class Player extends CellOccupant

Assembling a program from parts

How to write a program:

• find the modules (files or objects) which embody the strutures and
functions you are interested in.

• Call the functions in your own program.

Encapsulation
inheritance

• Files may #include other files, which in turn #include others, &c.

• Objects may inherit from other objects, e.g., Players are a type of Cell-
Occupant:
public class Player extends CellOccupant

Assembling a program from parts

How to write a program:

• find the modules (files or objects) which embody the strutures and
functions you are interested in.

• Call the functions in your own program.

So what’s the difference between a program and a package?

The program includes a main() function (or other code for immediate eval-
uation).

Compilation and/or execution

A two step process:

• Compilation: convert your text into machine-language instructions.
Produces an illegible file.

– C: an object file, file.o.

– In Java: a class file, file.class.

– Interpreted languages skip this step, and do it real-time.

• linking

– Find all of the modules you called, and put them together into one
file.

– Either explicitly list them, or set a path to search.

19

Compilation example

#!/usr/bin/bash
AROOT=/home/bklemens/Ascape
CCROOT=src/edu/brook/currencycrisis

gcj -C -d $AROOT/lib/ --classpath=$AROOT/ascapecore.jar:\
$AROOT/lib/edu/brook/ascape/model/:\
$AROOT/lib/:$AROOT/collections.zip:\
$AROOT/QTJava.zip:$AROOT/jcchart362J.jar \
$AROOT/$CCROOT/CurrencyModel.java $AROOT/$CCROOT/Bank.java \
$AROOT/$CCROOT/Investor.java $AROOT/$CCROOT/ParameterReader.java \
$AROOT/$CCROOT/MatrixOperator.java $AROOT/$CCROOT/Bond.java \
$AROOT/$CCROOT/MarketMaker.java

20

execution example
Java links real-time, so you need to give it a class list when you run the
program:

set AROOT=c:\cygwin\home\bklemens\Ascape
set JAVAEXE=c:\pfiles\java\bin\java
%JAVAEXE% -cp %AROOT%\lib\;%AROOT%\ascapecore.jar;\
%AROOT%\collections.zip;%AROOT%\jcchart362j.jar;\
%AROOT%\QTjava.zip edu.brook.ascape.model.Scape \
edu.brook.currencycrisis.CurrencyModel

21

Part II: Agent-based modelling

22

Complexity and emergence
The Mandelbrot set

• x0 = 0

• xn+1 = x
2
n + z

• If xn converges, n → ∞, then z ∈ Mandelbrot set.

23

Complexity and emergence
The Mandelbrot set

• x0 = 0

• xn+1 = x
2
n + z

• If xn converges, n → ∞, then z ∈ Mandelbrot set.

The only way to determine whether z ∈ set is to do the darn calcualtions.
Therefore, the set is:

• Deterministic

• Unpredictable

Agent-based modeling

• Specify simple rules for the micro-level behavior of the agents.

• Let them interact.

• Observe what the system converges to.

24

Agent-based modeling

• Specify simple rules for the micro-level behavior of the agents.

• Let them interact.

• Observe what the system converges to.

Again the setup is:

• Deterministic

• Unpredictable

Existential issues
Or, Why?

• Find parsimonious explanations for complex behaviors.

25

Existential issues
Or, Why?

• Find parsimonious explanations for complex behaviors.

• Replace models which make macro assumptions and get macro out-
puts with micro assumptions and macro outputs.

When to use an A.B.M. instead of an equation-based model

• When the game is iterated and period t+1 depends heavily on period
t (like the Mandelbrot set).

26

When to use an A.B.M. instead of an equation-based model

• When the game is iterated and period t+1 depends heavily on period
t (like the Mandelbrot set).

• When there are multiple equilibria, and the theory says nothing about
which will prevail (e.g., anything with a tipping point)

When to use an A.B.M. instead of an equation-based model

• When the game is iterated and period t+1 depends heavily on period
t (like the Mandelbrot set).

• When there are multiple equilibria, and the theory says nothing about
which will prevail (e.g., anything with a tipping point)

• When functional forms are expected to be nonlinear (e.g., anything
with a tipping point)

When to use an A.B.M. instead of an equation-based model

• When the game is iterated and period t+1 depends heavily on period
t (like the Mandelbrot set).

• When there are multiple equilibria, and the theory says nothing about
which will prevail (e.g., anything with a tipping point)

• When functional forms are expected to be nonlinear (e.g., anything
with a tipping point)

• When you have no idea what the macro functional forms are

When to use an A.B.M. instead of an equation-based model

• When the game is iterated and period t+1 depends heavily on period
t (like the Mandelbrot set).

• When there are multiple equilibria, and the theory says nothing about
which will prevail (e.g., anything with a tipping point)

• When functional forms are expected to be nonlinear (e.g., anything
with a tipping point)

• When you have no idea what the macro functional forms are

• When selling to non-mathematicians

The Agents

• Many of them

• generally dumb.

– limited processing ability

– limited information

– limited choices (e.g., location, network, buy/sell)

27

the game of life

• A 2-D grid

• if an empty space has 3 neighbors, then there’s a birth

• if a filled space has <2 neighbors or >3 neighbors, there’s a death.

We can do this with a space and agents on the space.

28

The agent class

public class agent{
public: location position;

int age, last_update, is_dead;

private: int neighbors;

public agent(int location){
age =
is_dead =
last_update = 0;
location = position;

}

void update(int t){
if (t !=last_update){

last_update= t;
neighbors = position.count_neighbors();
if (neighbors > 3 || neighbors < 2)

is_dead = 1;
}

}

29

The location class

public class location{
public: int is_alive, prior_state, last_update;

private: location neighbor_list[8];
int row, col, living_neighbors;
agent occupant;

public location (int row, int col){
set_up_neighbor_list(row, col);
is_alive = 0;
prior_state = 0;

}

Continued.

30

The location class

public update(int t){
if (t != last_update)

last_update = t;
prior_state = is_alive;
living_neighbors = count_neighbors();
if (is_alive){

occupant.update(t);
if (occupant.is_dead)

is_alive = 0;
} else {

if (neighbors ==2)
is_alive ++;
occupant = new agent(this);

}
}

public int am_i_alive(int t){
if (t == last_update)

return prior_state;
else

return is_alive;
}

}

31

The program
The agents (and the space) do all the work ⇒ the main loop just asks the
agents to keep updating.

space.initialize()
for (t=0; t<limit; t++){

foreach(location)
location.update()

do_accounting();
}

32

