Desiging a Cross-paradigm Modeling Framework

Ben Klemens

ben.klemens@census.gov

14 May 2013

• Stats undergrad: an ordinary least squares regression. What else is there?

Klemens Modeling Introduction 2/44

- Stats undergrad: an ordinary least squares regression. What else is there?
- Bayesian: a sequence of distributions. $P(X, Y, Z) = P(X|Y, Z) \cdot P(Y|Z) \cdot P(Z)$.

- Stats undergrad: an ordinary least squares regression. What else is there?
- Bayesian: a sequence of distributions. $P(X, Y, Z) = P(X|Y, Z) \cdot P(Y|Z) \cdot P(Z)$.
- Engineer: a flowchart explicitly describing the elements of a system.
- Agent-based modeler (ABMer): a collection of agents and rules for their interaction.

Klemens Modeling Introduction 2/44

- Stats undergrad: an ordinary least squares regression. What else is there?
- Bayesian: a sequence of distributions. $P(X, Y, Z) = P(X|Y, Z) \cdot P(Y|Z) \cdot P(Z).$
- Engineer: a flowchart explicitly describing the elements of a system.
- Agent-based modeler (ABMer): a collection of agents and rules for their interaction.
- Empiricist: an observed distribution of occurrences.

The Outline

- Motivation: why a standard model framework?
- Definition: Models as bundles of functions
- Some examples
- Filling in the blanks
 - Quick prototyping: you give me a likelihood function or an RNG; I'll test hypothesis about the model parameters.
- Transformation and combination operations
 - Both with pencil/paper and keyboard: a standard vocabulary for descriptive modeling
- A final example

Transforming a model produces a new model

http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

Klemens Modeling Introduction 4/44

Why do mathematicians formally define terms?

- If I use correctly-defined transformations on correctly defined atoms, I am guaranteed that the results are coherent.
- I can often determine what is *not* valid by inspection.
- Define transformations
 - ► Hierarchical models: the output from a set of child models feed data to a parent model.
 - ► Bayesian models: the output from a prior is used as a parameter set for the likelihood.
 - ► Structural equation models, causal models: simple models linked together to form a complex larger model.
- Modern computing technology
 - Formal definition maps immediately to structures and functions
- World peace
 - ► Monoids: $[(\mathbb{N}, +), (finite strings, concatenation), (models, cross)]$
 - ► There are commonalities across seemingly un-common genres.

The computing slide

What structure is provided on top of FORTRAN '77?

- Some really are FORTRAN '77 with a pretty interface.
- Some provide tools for one genre only. [Can't use R for ABM; can't use Repast for regression.]
- Even some unifications are still only for small subsets of models: S's GLM model notation; King's Zelig, also for GLMs; BUGS/JAGS/R-BUGS for distributions + GLMs;
- Church, BLOG, Lisp-Stat: broad, unstructured frameworks

Klemens Modeling Introduction 6/44

The computing slide

What structure is provided on top of FORTRAN '77?

- Some really are FORTRAN '77 with a pretty interface.
- Some provide tools for one genre only. [Can't use R for ABM; can't use Repast for regression.]
- Even some unifications are still only for small subsets of models: S's GLM model notation; King's Zelig, also for GLMs; BUGS/JAGS/R-BUGS for distributions + GLMs;
- Church, BLOG, Lisp-Stat: broad, unstructured frameworks

Apophenia, a C library

- This talk will not be an Apophenia tutorial or sales pitch. See http://apophenia.info.
- It will only have one slide with actual code.
- Please, implement this on your favorite platform, standalone or via front-end for Apophenia.

Definition

A model intermediates between data, parameters, and likelihoods

• data+parameters input: likelihood, or integrate to CDF

• data input: estimate parameters

• parameter input: draw random data, estimate most likely data

Notation

- D: Data space. Anything required by the model; 'private' to the model unless otherwise noted. ≤ is defined. [sample space]
- P: Parameter space. Similarly model-specific. [state space]
- M: Model space. The set of bundles of ML-consistent functions as per the next slide.

A bundle of functions

A model is an internally consistent bundle of functions to intermediate between data, parameters, and likelihoods:

- Likelihood: $(\mathbb{D}, \mathbb{P}) \to \mathbb{R}^+$.
 - ▶ Integrates to a finite value; always nonnegative.
 - ► In some cases, better described as an 'objective function'.

 Doesn't have to integrate to one.
- Estimation: $\mathbb{D} \to \mathbb{P}$
 - ▶ ML-consistency: $L(\mathbf{d}, \mathbf{p})$ is maximized by $\mathbf{p} = \text{Est}(\mathbf{d})$.
- RNG: \mathbb{P} (and uniform prng) $\to \mathbb{D}$.
 - ▶ Likelihood of draw $\mathbf{d} = RNG(\mathbf{p}) \propto L(\mathbf{d}, \mathbf{p})$.
- $\begin{array}{c} \bullet \ \mathrm{CDF} \colon (\mathbb{D}, \mathbb{P}) \to [0,1]. \\ \text{Proportion of random draws } \mathrm{RNG}(\textbf{p}) \leq \textbf{d} \to \mathrm{CDF}(\textbf{d}, \textbf{p}). \end{array}$

Alternatives to ML-consistency?

We could replace the consistency rule for Est using other consistency rules:

- KL-minimizing consistency
- Mean-squared-error minimizing
- Entropy-maximizing consistency
- Moments of $\mathrm{Est}(\mathbf{d})$ match moments of \mathbf{d} .

Alternatives to ML-consistency?

We could replace the consistency rule for Est using other consistency rules:

- KL-minimizing consistency
- Mean-squared-error minimizing
- Entropy-maximizing consistency
- Moments of Est(d) match moments of d.

But composing a entropy-maximizing model with a MoM model doesn't always make sense, so I stick to one genre here.

Three examples

The Normal example

- Likelihood: $\mathcal{N}(x,\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-(x-\mu)^2/2\sigma^2)$ or $\ln \mathcal{N}(x, \mu, \sigma^2) = (-(x - \mu)^2/2\sigma^2) - \ln(2\pi\sigma^2)/2.$
- Estimation: $\hat{\mu} = \text{mean of } D$; $\hat{\sigma} = \sum (d \hat{\mu})^2 / n$.
- RNG: See Devroye (1986).
- CDF: gsl_cdf_gaussian_P(d-mu, sd) (or see erf).

Klemens Modeling Three examples 13/44

The Discrete distribution (probability mass function, PMF)

A list of data items d_i , i = 1 ... N, with weights w_i .

- \mathbb{D} : \mathbb{R} , categories,
- \mathbb{P} : $\{\emptyset, \mathbb{D}^1, \mathbb{D}^2, \dots, \mathbb{D}^N\}$
- Estimation: Copy input data → parameters.
- Likelihood: If any elements in new data set $\mathbf{x} \in \mathbb{D}$ are not $\in d$, zero. Else, product of matched weights.
- RNG: draw from d_i s weighted by weights.
- CDF: sort d_i s, sum weights.

Klemens Modeling Three examples 14/44

OLS

As given in the textbooks, not a consistent model by the defn here.

FIGURE 5.3 The classical regression model.

[Greene, Econometric Analysis, 2nd ed., p 144]

OLS

```
Undergrad stats consists of picking \mathbb{D}: should it be {BMI, age, sex, hours exercise/day}, {BMI, age, sex, age×(is female), hours exercise/day}, {BMI, age, sqrt(hours exercise/day)}, ...?
```

OLS

```
Undergrad stats consists of picking \mathbb{D}: should it be {BMI, age, sex, hours exercise/day}, {BMI, age, sex, age×(is female), hours exercise/day}, {BMI, age, sqrt(hours exercise/day)}, ...?
```

Given \mathbb{D} , starts as expected, but we hit a difficulty with RNG.

- \mathbb{D} : as above, K variables.
- \mathbb{P} : $\boldsymbol{\beta} \in \mathbb{R}^K$
- Estimation: $\beta = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Y})$
- RNG: First, draw **X** from a PMF built from the input data; then draw ϵ from a $\mathcal{N}(0, \sigma)$; then $\mathbf{Y} = \mathbf{X}'\boldsymbol{\beta} + \epsilon$.
- Likelihood: $(\mathbf{Y} \beta \mathbf{X}) \sim \mathcal{N}(0, \sigma)$ (if $\mathbf{X} \in \mathbf{D}$); see Normal model.

Klemens Modeling Three examples 16/44

With a standard interface, build standard procedures

- Testing: use the CDF or parameter models (and their CDFs).
- Bootstrapping, Jackknifing, Cook's distance: requires only estimation.
- MLE methods: as above, require only log likelihood; may use the score
- ML imputation: also requires only likelihood
- Tea: an R package for survey processing
- K-L divergence: use CDF or likelihoods; RNG can help if you want to do importance sampling

Klemens Modeling Three examples 17/44

A simulation example

Just a likelihood

I only wrote down a likelihood function, $P(\mathbf{D}, \mathbf{P})$.

- Score (dlog likelihood): numeric deltas.
- Estimation: Use Maximum likelihood estimation.
 - All MLE algorithms repeatedly sample from the likelihood.
 Some use the score.
- RNG: ARMS (Gilks 1995)
- CDF: make random draws, count the percent up to a given point

Just an RNG

I only wrote down a likelihood function, $P(\mathbf{D}, \mathbf{P})$.

- Likelihood: make a million draws, write down a PMF using those draws.
- Estimation: give a likelihood, use prior slide.
- CDF: make random draws, count the percent up to a given point

A network simulation (just an RNG)

Agents have randomly drawn individual positions, match based on proximity.

- Fix $\sigma = 1$.
- For each of N agents,
 - ▶ Draw *N* preferences (p_i) from a $\mathcal{N}(0, \sigma)$.
- For each pair of agents,
 - ▶ Link with probability $1/(1+|p_i-p_i|)$.
- Count up links, report the sorted list of link counts for each agent.

The two most popular outputs

Figure: A distribution of the number of links to the two highest-ranked members of a ten-person network (w/jitter).

Klemens Modeling A simulation example 22/44

Our RNG defined a full model

We can calculate the other elements of the model from the RNG (memoize, use PMF).

- H: the most popular agent has < 4 links.
- $CDF_{NS}([4, 10, ..., 10], \emptyset) \approx 0.0533.$

Our RNG defined a full model

We can calculate the other elements of the model from the RNG (memoize, use PMF).

- H: the most popular agent has < 4 links.
- $CDF_{NS}([4, 10, ..., 10], \emptyset) \approx 0.0533.$

This was so easy to do, more people might start doing it.

Transforming models to produce other models: $\mathbb{M} \to \mathbb{M}$

The basic procedure

- Modify each element of the bundle
- Use defaults if needed
- Check the ML-consistency rules

Fixed parameters

Start with a $\mathcal{N}(\mu, \sigma)$; produce a $\mathcal{N}(\mu, 1)$.

- D: No change
- P: New space is reduced from original space
- Likelihood: Fix the parameter, use the base model's likelihood
- Estimation: MLE.
- RNG: Use the base model's.
- CDF: Use the base model's.

More transformations

- Fixed parameters
- Constrained data
- Constrained parameters
- Jacobian transformations
- Smoothing (e.g., cubic splines, moving average)
- Kernel density (using another model as the kernel)

Joining models: $(\mathbb{M}, \mathbb{M}) \to \mathbb{M}$

Stacking uncorrelated distributions

You need a Normal/Inverse Wishart prior for your Bayesian updating?

- \mathbb{D} : Two options: $\mathbb{D}_1 \times \mathbb{D}_2$ (if $\mathbb{D}_1 = \mathbb{D}_2$, one could send the same data to both models.)
- \mathbb{P} : $\mathbb{P}_1 \times \mathbb{P}_2$
- Likelihood: $L_1(\mathbf{d}_1, \mathbf{p}_1) \cdot L_2(\mathbf{d}_2, \mathbf{p}_2)$
- Estimation: Independent estimations.
- RNG: $(RNG_1(\mathbf{p}_1), RNG_2(\mathbf{p}_2))$
- CDF: use the default.

Easy to extend to three or more models.

Output from model $1 \Rightarrow$ input to model 2

- Four options:
 - $ightharpoonup \mathbb{P}_{\mathrm{out}} = \mathbb{D}_{\mathrm{in}}$
 - $ightharpoonup \mathbb{P}_{\text{out}} = \mathbb{P}_{\text{in}}$
 - $ightharpoonup \mathbb{D}_{\mathrm{out}} = \mathbb{D}_{\mathrm{in}}$
 - $ightharpoonup \mathbb{D}_{\mathrm{out}} = \mathbb{P}_{\mathrm{in}}$
- Aggregate model is a model in its own right, with its own \mathbb{P} and \mathbb{D} (but either may be \emptyset).

Parameter composition ($\mathbb{D}_{\mathrm{out}} = \mathbb{P}_{\mathrm{in}}$)

Instead of setting \mathbf{p}_2 to a fixed value, draw \mathbf{p}_2 from another distribution.

- RNG₁: $\mathbb{P}_1 \to \mathbb{D}_1$
- $LL_2:(\mathbb{D}_2,\mathbb{P}_2)\to\mathbb{R}$
- These are composable iff $\mathbb{D}_1 \equiv \mathbb{P}_2$. Then:
- $LL_2: (\mathbb{D}_2, RNG_1(\mathbb{P}_1)) \to \mathbb{R}$

Parameter composition ($\mathbb{D}_{\mathrm{out}} = \mathbb{P}_{\mathrm{in}}$)

Instead of setting \mathbf{p}_2 to a fixed value, draw \mathbf{p}_2 from another distribution.

- $RNG_1 : \mathbb{P}_1 \to \mathbb{D}_1$
- $LL_2:(\mathbb{D}_2,\mathbb{P}_2)\to\mathbb{R}$
- These are composable iff $\mathbb{D}_1 \equiv \mathbb{P}_2$. Then:
- $LL_2: (\mathbb{D}_2, RNG_1(\mathbb{P}_1)) \to \mathbb{R}$

We like to call M_1 the prior and M_2 the likelihood.

Parameter composition ($\mathbb{D}_{\mathrm{out}} = \mathbb{P}_{\mathrm{in}}$)

Instead of setting \mathbf{p}_2 to a fixed value, draw \mathbf{p}_2 from another distribution.

- $RNG_1 : \mathbb{P}_1 \to \mathbb{D}_1$
- $LL_2:(\mathbb{D}_2,\mathbb{P}_2)\to\mathbb{R}$
- These are composable iff $\mathbb{D}_1 \equiv \mathbb{P}_2$. Then:
- $LL_2: (\mathbb{D}_2, RNG_1(\mathbb{P}_1)) \to \mathbb{R}$

We like to call M_1 the prior and M_2 the likelihood.

- If M_1 and M_2 are on the conjugate table, then the combination model is a closed-form distribution.
- Else, use Gibbs sampling to produce a PMF model.

Data composition: multilevel modeling

- Do regressions for each classroom, producing params β^1, \dots, β^n .
- Then do a cluster analysis on the β s.
- I.e., use \mathbb{P}_{out} as \mathbb{D}_{in} .

Data composition: evaluating the simulation

Continuing the example of the network model, which outputs a data set.

A link distribution has some well-known distributions: Zipf, exponential,

- RNG₁: $\mathbb{P}_1 \to \mathbb{D}_1$
- $L_2: (\mathbb{P}_2, \mathbb{D}_2) \to \mathbb{R}^+$
- Compose to produce $L(\mathbf{p}_2, RNG_1(\mathbf{p}_1))$.

Filling in the form:

- D: ∅
- ℙ: λ
- Likelihood: $L_2(\emptyset, \mathbf{p}_2)$
- Estimation: (Stochastic) MLE.
- RNG, CDF: $\mathbb{D} = \emptyset$.

Data composition: use

- Above, we found the most likely λ from the simulation/evaluation model.
- Better: begin with a prior distribution on λ and use the sim/eval model to update to a posterior distribution on λ .

OK, here's some code.

```
#include <apop.h>
#include "network sim.c"
int main(){
   gsl_rng *r = apop_rng_alloc(1234);
   apop_model *comp = apop_model_dcompose(&network_sim,
                                          &apop_exponential, r);
   Apop_model_add_group(comp, apop_mle, .method=APOP_SIMAN);
   apop_model *estimated = apop_estimate(NULL, *comp);
   apop_model_print(estimated);
   apop_model *norm = apop_model_set_parameters(apop_normal, 3.5, .25);
   apop_model *post = apop_update(.prior=norm, .likelihood=comp);
   apop_data_pmf_compress(post->data);
   apop_data_sort(post->data);
   apop_model_print(post);
```

Output

A story problem

The dinner party

- Two types come to my 8PM dinner party:
 - ▶ Tries to be on time, but hits a sequence of 10-minute delays, each with probability λ .
 - ▶ Shoots for 8:30, gets there on time $\pm \epsilon$.
- Nobody shows up early.

The lateness model

```
egin{aligned} M_{\mathrm{mix}} &= & \\ \mathrm{mix} ( & & \mathrm{Jacobian}_{1/\lambda} ( & & \mathrm{Exponential}(\lambda) \\ & & ), & \\ \mathrm{truncate} ( & & \mathrm{Normal}(\mu, \ \sigma) \\ & & ) & ) \end{aligned}
```

For the aggregate model:

- $\mathbb{P} = (\lambda, \mu, \sigma)$
- $\mathbb{D} = \mathbb{R}^+$ (arrival times)

Don't forget priors

```
M_{\rm prior} =
stack(
     truncate(
           Normal(\mu_1, \sigma_1)
     Normal(\mu_2, \sigma_2),
     Invert(
           Wishart(\Sigma)
For M_{\text{prior}}:
    • \mathbb{P} = (\mu_1, \sigma_2, \mu_1, \sigma_2, \Sigma)
    • \mathbb{D} = (\lambda, \mu, \sigma) (AKA \mathbb{P}_{\text{Mix}})
```

The whole thing

$$M_{\text{arrival}} = \text{DP-compose}(M_{\text{prior}}, M_{\text{mix}})$$

For M_{arrival} :

- $\mathbb{P}_{arrival} = (\mu_1, \sigma_1, \mu_2, \sigma_2, \Sigma)$
- $\mathbb{D} = \mathbb{R}^+$ (arrival times)

The whole thing, written out

```
M_{\text{arrival}} = \text{DP-compose}(
                  stack(
                       truncate(
                            Normal(\mu_1, \sigma_1)
                       Normal(\mu_2, \sigma_2),
                       Invert(
                            Wishart(\Sigma)
                  mix(
                       Jacobian_{1/\lambda}
                            Exponential(\lambda)
                       truncate(
                            Normal(\mu, \sigma)
```

Using the model

Reduced to a nonparametric PMF:

- Fix $\mathbb{P}_{arrival}$ and find a posterior PMF of arrival times (Bayesian updating).
 - ► Then, do data-space evaluations, e.g. K-L divergence(M_{arrival}, PMF (data)).

Using the model

Reduced to a nonparametric PMF:

- Fix $\mathbb{P}_{arrival}$ and find a posterior PMF of arrival times (Bayesian updating).
 - ► Then, do data-space evaluations, e.g. K-L divergence(M_{arrival}, PMF (data)).

As a parameterized model:

- Use observed arrival times to find the optimum in $\mathbb{P}_{arrival}$.
 - ► Then, do parameter-based tests.

Using the model

Reduced to a nonparametric PMF:

- Fix $\mathbb{P}_{arrival}$ and find a posterior PMF of arrival times (Bayesian updating).
 - ► Then, do data-space evaluations, e.g. K-L divergence(M_{arrival}, PMF (data)).

As a parameterized model:

- Use observed arrival times to find the optimum in $\mathbb{P}_{arrival}$.
 - ► Then, do parameter-based tests.

The conclusion slide

We can formally define a model as a bundle of functions that are internally consistent.

It's a simple definition, but it lets us:

- Apply standard tools to simulations, ML models,
- Implement complex models using simple components (both at the keyboard and AFK).
- Describe disparate statistical situations in a consistent manner.
 - ► Clarify inconsistencies and reveal new applications of old tools.
 - ► Try methods from different genres of modeling.