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What is a statistical model?

e Stats undergrad: an ordinary least squares regression. What
else is there?
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What is a statistical model?

Stats undergrad: an ordinary least squares regression. What
else is there?

Bayesian: a sequence of distributions.
P(X,Y,Z)=P(X|Y,Z)-P(Y|Z)-P(2).

Engineer: a flowchart explicitly describing the elements of a
system.

Agent-based modeler (ABMer): a collection of agents and
rules for their interaction.

Empiricist: an observed distribution of occurrences.
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The Outline

Motivation: why a standard model framework?

Definition: Models as bundles of functions

e Some examples
Filling in the blanks

» Quick prototyping: you give me a likelihood function or an
RNG; I'll test hypothesis about the model parameters.

Transformation and combination operations

» Both with pencil/paper and keyboard: a standard vocabulary
for descriptive modeling

A final example
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Transforming a model produces a new model
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Why do mathematicians formally define terms?

o If | use correctly-defined transformations on correctly defined
atoms, | am guaranteed that the results are coherent.

e | can often determine what is not valid by inspection.

e Define transformations

» Hierarchical models: the output from a set of child models
feed data to a parent model.

» Bayesian models: the output from a prior is used as a
parameter set for the likelihood.

» Structural equation models, causal models: simple models
linked together to form a complex larger model.

e Modern computing technology
» Formal definition maps immediately to structures and functions
o World peace

» Monoids: [(N, +), (finite strings, concatenation), (models,
cross)]

» There are commonalities across seemingly un-common genres.
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The computing slide

What structure is provided on top of FORTRAN ‘777
e Some really are FORTRAN ‘77 with a pretty interface.

e Some provide tools for one genre only. [Can't use R for ABM,;
can't use Repast for regression.]

e Even some unifications are still only for small subsets of
models: S’s GLM model notation; King's Zelig, also for
GLMs; BUGS/JAGS/R-BUGS for distributions + GLMs;

e Church, BLOG, Lisp-Stat: broad, unstructured frameworks
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The computing slide

What structure is provided on top of FORTRAN ‘777
e Some really are FORTRAN ‘77 with a pretty interface.

e Some provide tools for one genre only. [Can't use R for ABM,;
can't use Repast for regression.]

e Even some unifications are still only for small subsets of
models: S’s GLM model notation; King's Zelig, also for
GLMs; BUGS/JAGS/R-BUGS for distributions + GLMs;

e Church, BLOG, Lisp-Stat: broad, unstructured frameworks
Apophenia, a C library

e This talk will not be an Apophenia tutorial or sales pitch. See
http://apophenia.info .

o It will only have one slide with actual code.

o Please, implement this on your favorite platform, standalone
or via front-end for Apophenia.
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Definition
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A model intermediates between data, parameters, and
likelihoods

e data+parameters input: likelihood, or integrate to CDF

e data input: estimate parameters

@ model/likelihood @

e parameter input: draw random data, estimate most likely data

i >
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Notation

e [D: Data space. Anything required by the model; ‘private’ to
the model unless otherwise noted. < is defined. [sample
space]

e P: Parameter space. Similarly model-specific. [state space]

e M: Model space. The set of bundles of ML-consistent
functions as per the next slide.
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A bundle of functions

A model is an internally consistent bundle of functions to
intermediate between data, parameters, and likelihoods:
e Likelihood: (D,P) — R*.
» Integrates to a finite value; always nonnegative.

» In some cases, better described as an ‘objective function’.
Doesn't have to integrate to one.

e Estimation: D — P
» ML-consistency: L(d, p) is maximized by p = EsT(d).
e RNG: P (and uniform prng) — D.
» Likelihood of draw d = RNG(p) x L(d, p).
e CDF: (D,P) — [0,1].
Proportion of random draws RNG(p) < d — CDF(d, p).
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Alternatives to ML-consistency?

We could replace the consistency rule for EST using other
consistency rules:

e KL-minimizing consistency
e Mean-squared-error minimizing
e Entropy-maximizing consistency

e Moments of EsT(d) match moments of d.
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Alternatives to ML-consistency?

We could replace the consistency rule for EST using other
consistency rules:

e KL-minimizing consistency

e Mean-squared-error minimizing

e Entropy-maximizing consistency

e Moments of EsT(d) match moments of d.

But composing a entropy-maximizing model with a MoM model
doesn’t always make sense, so | stick to one genre here.
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Three examples
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The Normal example

Likelihood: N(x, i, 0?) = \/2;7 exp(—(x — p)?/202) or
In N (x, t, 02) = (—(x — p)?/202) — In(2702) /2.
Estimation: 1 = mean of D; 6 = Y_(d — f1)?/n.

RNG: See Devroye (1986).

CDF: gsl_cdf_gaussian P(d-mu, sd) (or see erf).
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The Discrete distribution (probability mass function, PMF)

A list of data items d;, i = 1... N, with weights w;.

Klemens

D: R, categories, . ...
P: {0,D',D?, ..., DN}

Estimation: Copy input data — parameters.

Likelihood: If any elements in new data set x € D are not
€ d, zero. Else, product of matched weights.

RNG: draw from d;s weighted by weights.

CDF': sort djs, sum weights.

Modeling

Three examples
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OoLS

As given in the textbooks, not a consistent model by the defn here.
E(yix)

E(Ix = 2y ) pro o oo e e

E(ylx = x| ) oo

EQix =xq4)

¥

xq X, Xy

egression model.

[Greene, Econometric Analysis, 2" ed., p 144]
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OLS

Undergrad stats consists of picking D: should it be
{BMI, age, sex, hours exercise/day},

{BMI, age, sex, agex(is female), hours exercise/day},
{BMI, age, sqrt(hours exercise/day)}, ...?
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OLS

Undergrad stats consists of picking D: should it be
{BMI, age, sex, hours exercise/day},

{BMI, age, sex, agex(is female), hours exercise/day},
{BMI, age, sqrt(hours exercise/day)}, ...?

Given DD, starts as expected, but we hit a difficulty with RNG.

e D: as above, K variables.

e P: BeRK

Estimation: 3 = (X'X)~}(X"Y)

e RNG: First, draw X from a PMF built from the input data;
then draw € from a N/(0,0); then Y = X'3 + ¢.

Likelihood: (Y — 8X) ~ N(0,0) (if X € D); see Normal
model.
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With a standard interface, build standard procedures

e Testing: use the CDF or parameter models (and their CDFs).

e Bootstrapping, Jackknifing, Cook’s distance: requires only
estimation.

e MLE methods: as above, require only log likelihood; may use
the score

e ML imputation: also requires only likelihood
e Tea: an R package for survey processing

e K-L divergence: use CDF or likelihoods; RNG can help if you
want to do importance sampling
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A simulation example
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Just a likelihood

| only wrote down a likelihood function, P(D, P).

Score (dlog likelihood): numeric deltas.
Estimation: Use Maximum likelihood estimation.

» All MLE algorithms repeatedly sample from the likelihood.
Some use the score.

RNG: ARMS (Gilks 1995)

e CDF: make random draws, count the percent up to a given
point
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Just an RNG

| only wrote down a likelihood function, P(D, P).
o Likelihood: make a million draws, write down a PMF using
those draws.
e Estimation: give a likelihood, use prior slide.

e CDF: make random draws, count the percent up to a given
point
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A network simulation (just an RNG)

Agents have randomly drawn individual positions, match based on
proximity.

e Fixo=1.

For each of N agents,
» Draw N preferences (p;) from a N(0,0).

For each pair of agents,

» Link with probability 1/(1 + |p; — pj|).
Count up links, report the sorted list of link counts for each
agent.
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The two most popular outputs

10

links to most popular

0 2 4 6 8 10
links to 2nd most popular

Figure: A distribution of the number of links to the two highest-ranked
members of a ten-person network (w/jitter).
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Our RNG defined a full model

We can calculate the other elements of the model from the RNG
(memoize, use PMF).

e H: the most popular agent has < 4 links.
e CDFps([4,10,...,10],0) ~ 0.0533.

Klemens Modeling A simulation example 23/44



Our RNG defined a full model

We can calculate the other elements of the model from the RNG
(memoize, use PMF).

e H: the most popular agent has < 4 links.
e CDFps([4,10,...,10],0) ~ 0.0533.

This was so easy to do, more people might start doing it.
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Transforming models to produce other models: Ml — M
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The basic procedure

o Modify each element of the bundle
o Use defaults if needed

e Check the ML-consistency rules
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Fixed parameters

Start with a N'(u, o); produce a N (p, 1).
o D: No change

o P: New space is reduced from original space

Likelihood: Fix the parameter,use the base model’s likelihood
Estimation: MLE.

RNG: Use the base model’s.

CDF: Use the base model's.
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More transformations

Fixed parameters

Constrained data

Constrained parameters

Jacobian transformations

Smoothing (e.g., cubic splines, moving average)

Kernel density (using another model as the kernel)

Klemens Modeling Transforming models to produce other models: M — M 27/44



Joining models: (M, M) — M

Klemens Modeling Joining models: (M, M) — M 28/44



Stacking uncorrelated distributions

You need a Normal/Inverse Wishart prior for your Bayesian
updating?

e : Two options: D3 x Dy (if D; = Dy, one could send the
same data to both models.)

P: Py x P,

Likelihood: Li(d1,p1) - L2(d2, p2)

Estimation: Independent estimations.

RNG: (RNGl(pl),RNGQ(pz))

CDF: use the default.

Easy to extend to three or more models.
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Output from model 1 = input to model 2

e Four options:

> ]P)out = Din
> Pous = Pin
> Doy = Diy
> Douy = Pin

e Aggregate model is a model in its own right, with its own P
and D (but either may be 0).
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Parameter composition (D, = P;,)

Instead of setting p> to a fixed value, draw p, from another
distribution.

e RNG;:P; — I

o [Ly:(Dy,P) =R

e These are composable iff D; = P,. Then:
o [Ly: (D, RNGy(P1)) = R

Klemens Modeling Joining models: (M, M) — M 31/44



Parameter composition (D, = P;,)

Instead of setting p> to a fixed value, draw p, from another
distribution.

e RNG;:P; — I
o [Ly:(Dy,P) =R
e These are composable iff D; = P,. Then:
o [Ly: (D, RNGy(P1)) = R
We like to call My the prior and M, the likelihood.
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Parameter composition (D, = P;,)

Instead of setting p> to a fixed value, draw p, from another
distribution.

e RNG;:P; — I

o [Ly:(Dy,P) =R

e These are composable iff D; = P,. Then:

o [Ly: (D, RNGy(P1)) = R
We like to call My the prior and M, the likelihood.

e If My and M, are on the conjugate table, then the
combination model is a closed-form distribution.

o Else, use Gibbs sampling to produce a PMF model.
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Data composition: multilevel modeling

e Do regressions for each classroom, producing params
I B"
oo, 37,
e Then do a cluster analaysis on the 3s.

e |.e., use Py as Dy,.

Klemens Modeling Joining models: (M, M) — M 32/44



Data composition: evaluating the simulation

Continuing the example of the network model, which outputs a
data set.
A link distribution has some well-known distributions: Zipf,
exponential, .. ..
° RNGl . Pl — ]D)l
o L2 . (PQ,DQ) — R+
e Compose to produce L(p2, RNG1(p1)).
Filling in the form:
e D: ()
o P: A
Likelihood: Ly(0, p2)
Estimation: (Stochastic) MLE.
RNG, CDF: D = 0.
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Data composition: use

e Above, we found the most likely A from the
simulation /evaluation model.

e Better: begin with a prior distribution on A\ and use the
sim/eval model to update to a posterior distribution on A.
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OK, here’s some code.

#include <apop.h>
#include "network_sim.c"

int main(){
gsl_rng *r = apop_rng_alloc(1234);
apop_model *comp = apop_model_dcompose (&network_sim,
&apop_exponential, r);

Apop_model_add_group(comp, apop_mle, .method=APOP_SIMAN);
apop_model *estimated = apop_estimate(NULL, *comp);
apop_model_print (estimated) ;

apop_model *norm = apop_model_set_parameters(apop_normal, 3.5, .25);
apop_model #*post = apop_update(.prior=norm, .likelihood=comp) ;
apop_data_pmf_compress (post->data) ;

apop_data_sort (post->data) ;

apop_model_print (post) ;
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Output

0.018
0.016 - h
0.014 B
0.012 B
0.01
0.008
0.006
0.004
0.002

frequency

NT TR0 R S| 1

0
24 26 28 3 32 34 36 38 4 42 44 46
A
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A story problem
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The dinner party

e Two types come to my 8PM dinner party:

» Tries to be on time, but hits a sequence of 10-minute delays,
each with probability A.

» Shoots for 8:30, gets there on time =+e.
e Nobody shows up early.
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The lateness model

Mhinix =
mix(
Jacobiany /x(
Exponential())
).

truncate(
Normal(u, o)
)

)

For the aggregate model:
e P=(Au0)
e D =R" (arrival times)
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Klemens

Don’t forget priors

Mprior =
stack(
truncate(

Normal(u1, o1)
)1

Normal(pz, 02),

Invert(
Wishart(X)
)
)
For Mprior:

o P= (#15025/‘6170272)
o D= ()\,M,O') (AKA PMix)

Modeling A story problem
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The whole thing

Marrival = DP‘compose(Mprior’ Mmix)
For Marrival:

® Parrival = (/f‘lv 01, 42,02, z)
e D =RT (arrival times)

Klemens Modeling A story problem 41/44



The whole thing, written out

Moarrival = DP-compose(
stack(
truncate(

Normal(p1, o1)
),

Normal(p2, 02),

Invert(
Wishart(X)

)

),
mix(
Jacobiany /5 (
Exponential(\)
).

truncate(
Normal(p, o)
)

)
)
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Using the model

Reduced to a nonparametric PMF:

o Fix Purival and find a posterior PMF of arrival times
(Bayesian updating).
» Then, do data-space evaluations, e.g. K-L divergence(Marival,
PMF (data)).
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The conclusion slide

We can formally define a model as a bundle of functions that are
internally consistent.
It's a simple definition, but it lets us:

e Apply standard tools to simulations, ML models, . ...

¢ Implement complex models using simple components (both at
the keyboard and AFK).

e Describe disparate statistical situations in a consistent
manner.

» Clarify inconsistencies and reveal new applications of old tools.
» Try methods from different genres of modeling.
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